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Abstract. Spin-dependent electronic transport through a quantum dot has been analyzed theoretically
in the cotunneling regime by means of the second-order perturbation theory. The system is described by
the impurity Anderson Hamiltonian with arbitrary Coulomb correlation parameter U . It is assumed that
the dot level is intrinsically spin-split due to an effective molecular field exerted by a magnetic substrate.
The dot is coupled to two ferromagnetic leads whose magnetic moments are noncollinear. The angular
dependence of electric current, tunnel magnetoresistance, and differential conductance are presented and
discussed. The evolution of a cotunneling gap with the angle between magnetic moments and with the
splitting of the dot level is also demonstrated.

PACS. 72.25.Mk Spin transport through interfaces – 73.63.Kv Quantum dots – 85.75.-d
Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields
– 73.23.Hk Coulomb blockade; single-electron tunneling

1 Introduction

The vast step forward in fabrication of tunnel junc-
tions has enabled the implementation of extremely small
metallic grains and semiconductor quantum dots coupled
through tunnel barriers to external reservoirs [1,2]. Cur-
rently, transport through such ultra-small devices is be-
ing extensively studied because of many future application
possibilities and, more importantly, because of beautiful
physics that emerges in these nanoscale systems. In nanos-
tructures not only the manipulation of a single electron
charge is possible, but – when coupled to ferromagnetic
leads – also the manipulation of a single electron spin.
This is why those systems are considered to play an im-
portant role in spintronic devices.

An interesting feature of electronic transport through
nanoscale systems coupled to ferromagnetic leads is the
tunnel magnetoresistance (TMR). The TMR effect, al-
though discovered already three decades ago in planar
junctions [3], is still of current interest. It consists in a
change of the system conductance when relative orienta-
tion of the magnetic moments of external leads switches
from antiparallel to parallel alignment. In a general case,
magnetic moments of the two electrodes can form an ar-
bitrary angle (noncollinear configuration). Qualitatively
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different features of electron transport through nanosys-
tems appear due to discrete charging effects, leading to
Coulomb blockade and Coulomb oscillations of electric
current. The interplay of charge and spin effects gives rise
to new interesting phenomena, like for instance TMR os-
cillations with applied bias and gate voltages [4–9].

Theoretical considerations of electron tunneling
through quantum dots attached to ferromagnetic leads
have already been reported in a number of papers. Most
of them, however, are restricted to spin-dependent trans-
port in systems with collinear alignment of the electrodes’
magnetizations. Basically, all transport regimes in such
a geometry have already been addressed, including se-
quential (first order) tunneling [10,11], cotunneling (sec-
ond order) [12], resonant tunneling [13,14], and Kondo
regimes [15,16]. Spin polarized transport through quan-
tum dots coupled to ferromagnetic electrodes with non-
collinear magnetic moments is still not fully explored,
although it has already been considered in a couple of
papers [17–22].

In this paper we address the problem of second-order
(cotunneling) spin-dependent transport through quantum
dots coupled to ferromagnetic leads with arbitrary con-
figuration of the in-plane magnetic moments of external
electrodes. The considerations are limited to single-level
quantum dots. Moreover, the level of the corresponding
isolated dot is assumed to be spin-split due to coupling
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between the dot and a magnetic substrate on which the
dot is deposited. The corresponding splitting is assumed
to be larger than the level width Γ due to coupling of the
dot to external leads.

The paper is organized as follows. The model and
method are described in Section 2. Transport through an
empty quantum dot in the cotunneling regime is described
in Section 3, where also the relevant numerical results are
presented and discussed. Section 4 covers the problem of
cotunneling through a singly occupied dot. Final conclu-
sions are given in Section 5.

2 Description of the model and method

The system considered in this paper consists of a single-
level quantum dot coupled through tunnel barriers to two
external ferromagnetic leads, whose magnetizations are
oriented arbitrarily in the plane of the structure. The dot
is assumed to be deposited on a ferromagnetic substrate
which strongly interacts with the dot and leads to spin-
splitting of the dot level. The splitting is assumed to be
larger than the level splitting due to exchange interaction
between the dot and electrodes. The exchange interaction
results from tunneling processes and is of the first order
in the coupling parameter Γ [18,19]. When neglecting the
exchange coupling between the dot and leads, one may as-
sume that the level splitting is constant, i.e., independent
of applied voltage.

Coupling of the dot to ferromagnetic substrate is de-
scribed by an effective molecular field Bs, lying in the
plane of the structure. Thus, the magnetic moments of
the electrodes and the molecular field are all in a com-
mon plane. The effective molecular field determines the
global quantization axis for electron spin on the dot (axis
z antiparallel to the molecular field). In turn, the local
quantization axis in the leads is determined by the corre-
sponding local magnetization direction, and is parallel to
the net spin of the lead (thus, being antiparallel to the lo-
cal magnetic moment). Furthermore, we assume that the
net spin of the left (right) lead forms an angle ϕL (ϕR)
with the global quantization axis as shown in Figure 1. In
order to distinguish between different quantization direc-
tions, the majority (minority) spins in the local reference
systems are labelled with σ = +(−), while spin projection
on the global quantization axis is denoted as σ =↑ (↓) for
spin-up (spin-down) electrons.

Hamiltonian of the system has the general form H =
HL + HR + HD + HT, where HL and HR describe the
left and right leads as reservoirs of noninteracting quasi-
particles, HD is the dot Hamiltonian, and tunneling pro-
cesses between the electrodes and dot are included in HT.
The lead Hamiltonians are diagonal in the respective local
coordinate systems, Hα =

∑
σ=+,−

∑
k∈α εαkσa†

αkσaαkσ

(for α = L, R), with εαkσ being the energy of a single elec-
tron with wavevector k and spin σ in the lead α, whereas
a†

αkσ and aαkσ denote the corresponding creation and an-
nihilation operators.

The dot is described by the Anderson Hamiltonian,
which in the global reference frame can be expressed as

L R

Lϕ
Rϕ

x
y

z

↑ε

↓ε
U

Fig. 1. The schematic of a magnetic quantum dot coupled to
ferromagnetic leads. Classical spin of the lead α (α = L, R) can
form an arbitrary angle ϕα with the dot spin quantization axis
(axis z), as indicated.

HD =
∑

σ=↑,↓ εσd†σdσ + Un↑n↓, where εσ is the energy of
an electron with spin σ, εσ = ε∓ gµBBs, and d†σ (dσ) cre-
ates (annihilates) a spin-σ electron. Here, g is the Lande
factor and ε is the dot level energy in the absence of
magnetic electrodes and molecular field due to the sub-
strate. The second term of the dot Hamiltonian describes
Coulomb interaction of two electrons of opposite spins re-
siding on the dot, with U denoting the corresponding cor-
relation energy. The tunnel Hamiltonian takes the form

HT =
∑

α

∑

k∈α

[(
Tαk+a†

αk+ cos
ϕα

2
− Tαk−a†

αk− sin
ϕα

2

)
d↑

+
(
Tαk+a†

αk+ sin
ϕα

2
+ Tαk−a†

αk− cos
ϕα

2

)
d↓ + h.c.

]

,

(1)

with Tαkσ denoting the tunnel matrix elements between
the dot states and majority (σ = +) or minority (σ = −)
electron states in the lead α when ϕα = 0.

Due to the coupling between dot and leads, the dot
level acquires a finite width. When the magnetic moment
of lead α and the molecular field acting on the dot are
parallel, the corresponding contribution Γ σ

α to the dot
level width may be written as Γ σ

α = 2π|Tασ|2ρασ, where
ρασ is the spin-dependent density of states for the ma-
jority (σ = +) and minority (σ = −) electrons in the
lead α. The parameters Γ σ

α will be used in the following
to parameterize strength of the coupling between the dot
and lead α. It is convenient to express the coupling pa-
rameters in terms of spin polarization defined as Pα =
(Γ+

α − Γ−
α )/(Γ+

α + Γ−
α ). Thus, the coupling strength can

be written as Γ±
α = Γα(1±Pα), where Γα = (Γ+

α +Γ−
α )/2.

In our considerations we assume ΓL = ΓR = Γ/2.
In the case of ferromagnetic leads, the coupling of

the spin-up dot level is different from the coupling of
the spin-down level, which is due to different densities of
states for spin-majority and spin-minority electron bands
in the leads. This may result in the splitting of the dot
level [12,23]. Here, we assume that the dot level splitting,
∆ = ε↓ − ε↑, due to the molecular field is larger than the
coupling parameters, ∆ � Γ±

α . In other words, we assume
that the exchange interaction between the dot and mag-
netic leads is much smaller than the Zeeman energy due
to the molecular field and can be neglected. An electron
residing on the dot has then either spin up or down. Thus,
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the corresponding density matrix in the global quantiza-
tion system is diagonal in the spin space [24]. In that case,
only the second-order processes (with respect to the tun-
neling Hamiltonian) have to be taken into account in the
Coulomb blockade regime. When the above condition is
not fulfilled, the exchange interaction cannot be ignored
and therefore the first-order processes, which are respon-
sible for the exchange coupling (and do not contribute to
charge transport), have to be considered.

In the Coulomb blockade regime, the energy needed to
put an electron on the dot surpasses the energy provided
by the transport voltage and the sequential tunneling is
exponentially suppressed. The dot is then in a well de-
fined charge state, and quantum charge fluctuations are
suppressed. Although the energy conservation prohibits
the first-order tunneling transitions, the current can still
be mediated by higher-order tunneling processes involving
correlated tunneling of two (cotunneling) or more elec-
trons via intermediate virtual states [25].

The rate of electron cotunneling from a spin-majority
state in the lead α to a spin-majority state in the lead β
can be determined using the second-order perturbation
theory [25,26], and is given by

γ+⇒+
αβ =

2π

�

∣
∣
∣
∣
∣

∑

v

〈Φ+
α |HT|Φv〉〈Φv |HT|Φ+

β 〉
εi − εv

∣
∣
∣
∣
∣

2

δ(εi − εf ),

(2)
where |Φ+

α 〉 and |Φ+
β 〉 are the initial and final states of the

system, whereas |Φv〉 is a virtual state. The corresponding
energies are denoted as εi, εf , and εv.

One can distinguish cotunneling processes that change
the magnetic (and consequently also energetic) state of
the dot, and processes affecting neither magnetization nor
energy of the dot. The former (latter) processes will be re-
ferred to as inelastic (elastic) ones. The elastic cotunneling
processes are fully coherent [27] and do not change the dot
occupation probabilities. Contrarily, inelastic cotunneling
influences the occupation numbers of the dot, and can take
place only when the dot is occupied by a single electron
– either spin-up or spin-down. Furthermore, one can also
distinguish between single-barrier and double-barrier co-
tunneling. Only the latter processes contribute directly to
the current. However, the inelastic single-barrier cotunnel-
ing processes can change the occupation probabilities, and
consequently can also influence the electric current flowing
through the system. In particular, inelastic single-barrier
cotunneling processes which reverse spin of the dot play
a significant role. This is because they can open system
for more efficient tunneling processes, when the system is
blocked by an electron of a given spin orientation residing
on the dot [12].

In the following we will consider two different situa-
tions. The first one corresponds to an empty dot (due to
particle-hole symmetry the results can be adapted to the
case of doubly occupied dot). The second situation is the
case of a singly occupied dot.

3 Cotunneling through an empty dot

When the dot level is far above the Fermi energy of the
leads, εσ � kBT, Γ, |eV |, there are no electrons on the
quantum dot and electric current can flow only due to
elastic cotunneling processes. Because of the particle-hole
symmetry, a similar analysis can be directly performed for
a doubly occupied dot, when εσ + U � 0 and |εσ + U | �
kBT, Γ, |eV |. As in the case of an empty dot, the current
can then flow only due to elastic cotunneling.

3.1 Theoretical description

Electric current I flowing from the left to right lead is
given by

I = −e
∑

σ,σ′=+,−

(
γσ⇒σ′
LR,0 − γσ⇒σ′

RL,0

)
, (3)

with γσ⇒σ′
LR,χ being the elastic cotunneling rate for transi-

tion from the left to right leads, when the dot is in the
state |Φχ〉 [χ = 0 in Eq. (3)] and when a majority (σ = +)
or minority (σ = −) electron of the left lead tunnels to
majority (σ′ = +) or minority (σ′ = −) electron band
in the right lead. Similarly, γσ⇒σ′

RL,0 is the elastic cotunnel-
ing rate for transition from the right to left electrodes. In
equation (3) −e denotes the electron charge (e > 0).

The transition rate for electrons tunneling from the
majority spin band in the left lead to the majority spin
band in the right lead is given by the formula

γ+⇒+
LR,0 =

2π

�

∫∫

dεLdεRρL+ρR+

×|TL+|2|TR+|2f(εL)[1 − f(εR)]

×
[
cos (ϕL/2) cos (ϕR/2)

εL + µL − ε↑
+

sin (ϕL/2) sin (ϕR/2)
εL + µL − ε↓

]2

×δ(εL + µL − εR − µR) , (4)

with µL (µR) denoting the electrochemical potential of
the left (right) lead and f(ε) being the Fermi-Dirac dis-
tribution function, f(ε) = 1/[exp(ε/kBT )+1]. We assume
µL = −eV/2 and µR = eV/2, and the energy is mea-
sured from the Fermi level of the leads in equilibrium sit-
uation (V = 0). The integrals in equation (4) can be calcu-
lated quite easily using the contour integration method, as
described in the Appendix. Following this procedure one
finds

γ+⇒+
LR,0 =

Γ+
L Γ+

R

h
fB(µR − µL)

{

cos2
ϕL

2
cos2

ϕR

2
A2(ε↑)

+ sin2 ϕL

2
sin2 ϕR

2
A2(ε↓)

+
sin ϕL sin ϕR

2(ε↑ − ε↓)
[A1(ε↑) − A1(ε↓)]

}

, (5)

where fB(ε) is the Bose function, fB(ε) =
1/[exp(ε/kBT ) − 1], and An(εσ) = Bn(εσ − µR) −
Bn(εσ − µL), with Bn(x) defined as

Bn(x) = Re
d(n−1)

d(n−1)x
Ψ

(
1
2

+
ix

2πkBT

)

. (6)
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Here Ψ(z) is the digamma function. Similar formulae can
also be derived for the other transition rates.

Having found all the cotunneling rates, one can calcu-
late the electric current,

I =
eΓ 2

4h

{

(1 − PL cosϕL)(1 − PR cosϕR)A2(ε↓)

+(1 + PL cosϕL)(1 + PR cosϕR)A2(ε↑)

+
2PLPR sin ϕL sin ϕR

ε↓ − ε↑
[A1(ε↓) − A1(ε↑)]

}

. (7)

In the following we will present numerical results on
the electric current and the associated magnetoresistance.
The TMR effect is described quantitatively by the ratio

TMR =
IP − I(ϕL, ϕR)

I(ϕL, ϕR)
, (8)

where I(ϕL, ϕR) is the current flowing in the noncollinear
configuration described by the angles ϕL and ϕR, whereas
IP is the current flowing in the parallel configuration cor-
responding to ϕL = ϕR = 0.

3.2 Numerical results

The formula (7) for electric current corresponds to the
situation, where the magnetic moments of the leads and
the effective molecular field acting on the dot are oriented
arbitrarily in the plane of the structure. Further numer-
ical analysis will be restricted, however, to the following
two situations: (i) the magnetic moment of the left lead is
parallel to the molecular field acting on the dot (ϕL = 0),
while the magnetic moment of the right lead can have an
arbitrary orientation, and (ii) the magnetic moments of
both leads can rotate symmetrically in the opposite di-
rections, ϕR = −ϕL. The case (i) corresponds to the sit-
uation when magnetic moment of one lead and magnetic
moment of the layer producing the molecular field acting
on the dot are fixed along the same direction. This can
be achieved for instance by a common antiferromagnetic
underlayer with strong exchange anisotropy at the anti-
ferromagnet/ferromagnet interface. The situation (ii), in
turn, corresponds to the case when both leads are equiva-
lent and their magnetic moments can be rotated simulta-
neously by an external magnetic field. Now, we will ana-
lyze both situations in more detail and we begin with the
case (i).

3.2.1 Case (i): ϕL = 0

When ϕL = 0, the electric current is given by the formula

I =
eΓ 2

4h
[(1 − PL)(1 − PR cosϕR)A2(ε↓)

+(1 + PL)(1 + PR cosϕR)A2(ε↑)] , (9)

which follows directly from equation (7). In Figure 2 we
show the current (a, c) flowing through the system and the

corresponding TMR (b, d) as a function of the bias volt-
age for several values of angle ϕR, and as a function of the
angle ϕR for several values of the bias voltage. The cur-
rent decreases and TMR increases as the angle ϕR varies
from ϕR = 0 to ϕR = π, which corresponds to the transi-
tion from parallel to antiparallel magnetic configurations.
Parts (c) and (d) show explicitly this angular dependence.
Both the current and TMR vary monotonously with ϕR

(for 0 ≤ ϕR ≤ π) and electric current reaches minimum,
while TMR maximum, at ϕR = π, i.e., in the antiparallel
configuration. Such a behavior is typical of normal spin
valves and results from spin asymmetry in tunneling pro-
cesses. It is also worth noting that TMR is only weakly
dependent on the bias voltage [see Fig. 2b].

Assuming the same spin polarization of the leads, PL =
PR = P , one finds the following explicit formula for TMR
in the zero bias and zero temperature limits:

TMR =

(1 − cosϕR)P
[
(1 + P )ε2

↓ − (1 − P )ε2
↑
]

(1 + P )(1 + P cosϕR)ε2
↓ + (1 − P )(1 − P cosϕR)ε2

↑
.

(10)

The above formula describes the angular variation of
TMR and shows explicitly that TMR reaches maximum
for ϕ = π. This maximum value is given by the expression

TMR(max) =
2P

1 − P 2

[

P +
ε2
↓ − ε2

↑
ε2
↑ + ε2

↓

]

. (11)

The first term in the bracket of the above equation gives
the Julliere’s value of TMR, whereas the second term de-
scribes enhancement of the tunnel magnetoresistance due
to level splitting. Such an enhancement of TMR may be
of some interest from the application point of view.

3.2.2 Case (ii): ϕR = −ϕL

Consider now the situation (ii), when ϕR = −ϕL ≡ ϕ.
The magnetic moment of the left lead rotates now to-
gether with the magnetic moment of the right lead, but in
the opposite direction. The electric current is then given
by equation (7) with ϕR = ϕ and ϕL = −ϕ. The corre-
sponding bias and angular dependence of the cotunneling
current and TMR is displayed in Figure 3.

It is interesting to note that the angular dependence
of electric current and TMR differs now from that found
above for the situation (i). In order to understand this
difference one should take into account the fact that
ϕR = ϕL = 0 corresponds to the parallel configuration,
whereas the situation with ϕR = −ϕL = π/2 corresponds
to the antiparallel configuration with magnetic moments
oriented perpendicularly to the molecular field acting on
the dot.

It is also worth noting that electric current
reaches minimum and TMR maximum not exactly at
ϕR = −ϕL = π/2, but for the configuration which is close
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Fig. 2. (Color online) The cotunneling current (a, c) and the TMR effect (b, d) as a function of the bias voltage (left column)
and the angle ϕR (right column). The parameters assumed for calculations are: kBT = Γ , ε↑ = 18Γ , ε↓ = 22Γ , PL = PR = 0.5,
ϕL = 0.
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Fig. 3. (Color online) The cotunneling current (a, c) and the TMR effect (b, d) as a function of the bias voltage (left column)
and as a function of ϕ = ϕR = −ϕL (right column). The other parameters are the same as in Figure 2.

to the antiparallel one. Moreover, position of these min-
ima and maxima depends on the bias voltage, as shown in
Figure 3c, d. In turn, the case ϕR = −ϕL = π corresponds
again to the parallel configuration, but with the magnetic
moments of the electrodes being antiparallel to the molec-
ular field. This leads to a local maximum of electric current
(minimum in TMR) at ϕR = −ϕL = π. It is interesting
to note that the two parallel configurations (aligned and

anti-aligned with respect to the molecular field) are not
equivalent, and consequently the corresponding currents
and also TMR values are not equal.

When assuming equal spin polarizations of the leads
and low bias and temperature limits, one finds that the
TMR effect at ϕR = −ϕL = π (which corresponds to its
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local minimum) is given by

TMR(min) =
4P (ε2

↓ − ε2
↑)

(1 + P )2ε2
↑ + (1 − P )2ε2

↓
. (12)

In the same limit and for a nonzero spin polarization P ,
one can show that the two maxima of TMR appear at
ϕ = arccosα and ϕ = 2π−arccosα, with α = −∆/P (ε↑+
ε↓). In the limit of P = 0 TMR vanishes by definition.
In the case when |∆| < P (ε↑ + ε↓), the maxima appear
approximately at ϕR = −ϕL = π/2 and ϕR = −ϕL =
3π/2. The corresponding TMR value is then equal

TMR(max) =
P [(2 + P )ε↓ − (2 − P )ε↑] (ε↑ + ε↓)

ε2
↑ + ε2

↓ − 2P 2ε↑ε↓
. (13)

4 Cotunneling through a singly occupied dot

By applying an external gate voltage to the dot, one can
tune position of the level energy and this way also the
dot occupation. When εσ is negative and εσ + U positive,
the dot is singly occupied at equilibrium for Γ, kBT �
|εσ|, |εσ + U |, and the system is in the Coulomb blockade
regime. As before, we will consider the two situations (i)
and (ii) defined in the previous section.

4.1 Theoretical description

In the case studied in the preceding section the dot was
empty, and the second-order current was mediated only by
elastic cotunneling processes. When the dot is singly occu-
pied, the cotunneling current can also flow due to inelastic
cotunneling, in which the electrons tunneling to and off the
dot have opposite spin orientations (and consequently also
different energies due to the level spin-splitting). These
inelastic cotunneling processes determine the occupation
numbers of the dot.

The probabilities p↑ and p↓, that the dot is occupied ei-
ther by a spin-up or spin-down electron, can be calculated
from the following stationary master equation:

0 =
∑

α,β=L,R

(
− γαβ,↑⇒↓ p↑ + γαβ,↓⇒↑ p↓

)
, (14)

and taking into account also the normalization condition,
p↑ + p↓ = 1. Here, γαβ,σ⇒σ̄ denotes the rate of inelastic
cotunneling from lead α to lead β with the simultaneous
change of the dot spin from σ to σ̄ ≡ −σ. The inelas-
tic cotunneling processes can take place through one of
the two virtual states, |Φ0〉 and |Φd〉, which correspond
to the empty and doubly occupied dot, respectively. The
corresponding energies are ε0 = 0 for the empty state and
εd = ε↑ + ε↓ + U for the doubly occupied state.

The rate of inelastic processes which transfer a spin-
majority electron from the left lead to the spin-down level

of the dot and a spin-up electron from the dot to the spin-
majority electron band in the right lead is given by

γ+⇒+
LR,↑⇒↓ =

2π

�

∫∫

dεLdεRρL+ρR+|TL+|2|TR+|2

× sin2 ϕL

2
cos2

ϕR

2
f(εL)[1 − f(εR)]

×
(

1
εL + µL − ε↓ − U

− 1
εR + µR − ε↑

)2

×δ(εL + µL − εR − µR + ε↑ − ε↓). (15)

The total rate of inelastic cotunneling from the left to
right leads, which changes the dot state from |Φ↑〉 to |Φ↓〉,
can be found by summing up over the spin-majority and
spin-minority electrons,

γLR,↑⇒↓ =
∑

σ,σ′=+,−
γσ⇒σ′
LR,↑⇒↓. (16)

The corresponding analytical expression can be derived in
a similar way as in the case of elastic cotunneling described
in the previous section and takes the form

γLR,↑⇒↓ =
fB(µR − µL − ε↑ + ε↓)

h

×
(

Γ+
L Γ+

R sin2 ϕL

2
cos2

ϕR

2

+ Γ+
L Γ−

R sin2 ϕL

2
sin2 ϕR

2

+ Γ−
L Γ+

R cos2
ϕL

2
cos2

ϕR

2
+ Γ−

L Γ−
R cos2

ϕL

2
sin2 ϕR

2

)

×
{

B2(ε↑ − µR) − B2(ε↓ − µL)

+ B2(ε↑ + U − µR) − B2(ε↓ + U − µL) +
2
U

[
B1(ε↑ − µR)

− B1(ε↓ − µL) − B1(ε↑ + U − µR) + B1(ε↓ + U − µL)
]
}

.

(17)

The cotunneling rate γLR,↓⇒↑ can be calculated in a sim-
ilar way. In turn, the rate of elastic cotunneling can be
found as described in Section 3.

Having calculated the cotunneling rates and the occu-
pation probabilities, one can determine the current flowing
from the left to right leads. The contributions Iinel and Iel

due to inelastic and elastic cotunneling, respectively, are
given by

Iinel = −e
∑

σ=↑,↓
(γLR,σ⇒σ̄ − γRL,σ⇒σ̄) pσ, (18)

Iel = −e
∑

σ=↑,↓

∑

σ′,σ′′=+,−

(
γσ′⇒σ′′
LR,σ − γσ′⇒σ′′

RL,σ

)
pσ. (19)

The total cotunneling current I is then equal

I = Iinel + Iel. (20)

The analytical expression for the current in the case of a
singly occupied dot is cumbersome and will not be pre-
sented here.



I. Weymann and J. Barnaś: Cotunneling through a quantum dot coupled to ferromagnetic leads... 295

d

c

b

a

0.0 0.5 1.0 1.5 2.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
 eV= 15Γ                 eV= −2Γ
 eV= 5Γ                   eV= −5Γ
 eV= 2Γ                   eV= −15Γ

 

 

ϕ
R
/π

-1.0

-0.5

0.0

0.5

1.0

1.5
 eV= 15Γ      eV= −5Γ
 eV= 10Γ      eV= −10Γ
 eV= 5Γ        eV= −15Γ

 

-15 -10 -5 0 5 10 15
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

 

eV/Γ

T
M

R

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

I 
(1

0-2
 e

Γ/
  )

 ϕ
R
 = 0 

 ϕ
R
 = π/3

 ϕ
R
 = 2π/3

 ϕ
R
 = π

�

Fig. 4. (Color online) The cotunneling current (a, c) and the TMR effect (b, d) as a function of the bias voltage (left column)
and the angle ϕR (the right column). The parameters assumed for calculations are: kBT = Γ , ε↑ = −22Γ , ε↓ = −18Γ , U = 40Γ ,
PL = PR = 0.5, ϕL = 0.

4.2 Numerical results

As far as physics is concerned, the situation with singly
occupied dot becomes more interesting. As before, we will
analyze the two situations (i) and (ii).

4.2.1 Case (i): ϕL = 0

When the magnetic moment of the left electrode is fixed
(ϕL = 0) and the magnetic moment of the right lead is
free to rotate, the angular and bias dependence of electric
current and TMR is shown in Figure 4. Except for the
parallel configuration, the current-voltage curves are now
asymmetric with respect to the bias reversal [see Fig. 4a].
This asymmetry also leads to related asymmetric behav-
ior of TMR [Fig. 4b]. Moreover, for positive bias voltage,
the TMR effect can change sign and become negative in a
certain range of the bias and angle values. Such an asym-
metry in transport characteristics with respect to the bias
reversal is of some importance for applications, particu-
larly when the current is significantly suppressed for one
bias polarization (diode behavior).

In order to account for the bias asymmetry, let us con-
sider only the antiparallel configuration. One should then
realize that owing to the level splitting, the single-barrier
inelastic cotunneling processes can occur only when the
dot is occupied by a spin-down electron. This follows sim-
ply from the energy conservation rule. Thus, the single-
barrier processes can assist the fastest double-barrier co-
tunneling processes (spin-up electron tunnels through the
left barrier and spin-down electron tunnels through the
right barrier), but only for positive bias. This is because

the fastest processes can occur when the dot is occupied
by a spin-down electron for negative bias and by a spin-up
electron for positive bias. From this follows that the con-
ductance is larger for positive than for negative bias volt-
age. This is indeed the case in the characteristics shown in
Figure 4a. The above described mechanism of the asym-
metry with respect to the bias reversal does not hold when
magnetic moments of the two leads are parallel, so the cor-
responding current-voltage curve is symmetrical.

To demonstrate the above described asymmetry more
clearly, the corresponding differential conductance is dis-
played in Figure 5a. The asymmetry for ϕR > 0 is clearly
evident. Besides the asymmetry, an additional interest-
ing feature of the differential conductance is also visible,
namely the characteristic dip in the small bias regime.
This dip is a consequence of the suppression of inelastic
double-barrier cotunneling events when |eV | < |∆|. For
|eV | > |∆|, the inelastic cotunneling processes are allowed,
leading to an enhanced conductance. The asymmetry and
zero bias anomaly are even more evident at lower tem-
perature, as shown in Figure 5b. Such a suppression of
the inelastic cotunneling events at small bias was used re-
cently as a spectroscopic tool to determine spin splitting
of the dot level and the corresponding g-factor [28].

The angular variation of electric current and TMR
reveals further new features. For negative bias there is
a maximum of absolute value of electric current in the
parallel configuration and a minimum in the antiparallel
configuration. For positive bias, however, the electric cur-
rent has a maximum for noncollinear configuration, as de-
picted in Figure 4c. The nonmonotonous variation of elec-
tric current with the angle ϕR leads to the corresponding
nonmonotonous variation of TMR, shown in Figure 4d.
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Fig. 5. (Color online) Differential conductance corresponding
to the situation shown in Figure 4a, calculated for two different
temperatures.

Furthermore, TMR may now become negative, as already
mentioned before.

Numerical results presented so far were shown for a
single value of the level splitting, ∆ = 4Γ . From the ex-
perimental point of view, variation of the conductance as
a function of the level splitting (induced for instance by
a strong external magnetic field), allows one to determine
some interesting transport and spectroscopic characteris-
tics. Therefore, in Figure 6 we show the differential con-
ductance for different splitting of the dot level in the par-
allel and antiparallel configurations. By measuring width
of the conductance dip, one can determine for instance the
spectroscopic g-factor [28].

In the case of a deep Coulomb blockade regime and
|eV |, kBT � |∆|, one can derive an approximate formula
for the dip in differential conductance due to the suppres-
sion of inelastic cotunneling. Writing ε↑ = ε − ∆/2 and
ε↓ = ε + ∆/2 one finds then the following expression:

G =
Γ 2e2

4h

[
(1 + PL cosϕL)(1 + PR cosϕR)

(ε − ∆/2)2

+
(1 − PL cosϕL)(1 − PR cosϕR)

(ε + U + ∆/2)2

− 8PLPR sin ϕL sin ϕR

(ε − ∆/2)(ε + U + ∆/2)

]

, (21)
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Fig. 6. (Color online) Differential conductance for different
values of the level splitting for the parallel (a) and antiparallel
(b) magnetic configurations. The parameters are: kBT = 0.2Γ ,
ε↑ = ε − ∆/2, ε↓ = ε + ∆/2, ε = −20Γ , U = 40Γ , and
PL = PR = 0.5.

which is valid for arbitrary magnetic configurations. This
expression approximates the plateaus shown in Figure 5.
When assuming ϕL = ϕR = 0 (which corresponds to the
parallel configuration), equation (21) simplifies to the fol-
lowing form

GP =
Γ 2e2

4h

[
(1 + PL)(1 + PR)

(ε − ∆/2)2
+

(1 − PL)(1 − PR)
(ε + U + ∆/2)2

]

,

(22)
whereas for the antiparallel alignment (ϕL = 0, ϕR = π)
it becomes

GAP =
Γ 2e2

4h

[
(1 + PL)(1 − PR)

(ε − ∆/2)2
+

(1 − PL)(1 + PR)
(ε + U + ∆/2)2

]

.

(23)
The above two expressions describe the plateaus in dif-
ferential conductance shown in Figure 6. It is also worth
noting that generally GP > GAP. Furthermore, both GP

and GAP vary monotonously with spin polarization of the
leads – in the case of nonmagnetic leads (PL = PR = 0)
GP = GAP, whereas for PL = PR = 1 (which corresponds
to half-metallic leads) GP is maximal and GAP = 0.
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Fig. 7. (Color online) The cotunneling current (a, c) and the TMR effect (b, d) as a function of the bias voltage (left column)
and ϕ = ϕR = −ϕL (right column). The other parameters are the same as in Figure 4.

4.2.2 Case (ii): ϕR = −ϕL

Transport characteristics in the second situation, i.e., for
the case when ϕR = −ϕL = ϕ, are displayed in Figure 7.
One can note that the current is now almost independent
of the magnetic configuration. Nevertheless, the angular
dependence of the current becomes more visible in the cor-
responding differential conductance, plotted in Figure 8a
for different values of the angle ϕ, and also in Figure 8b for
the same situation, but for much lower temperature. The
cotunneling gap due to suppression of the inelastic pro-
cesses is also clearly visible. The dip in differential conduc-
tance for |eV | � kBT, |∆| is given by equation (21). Since
the system is now symmetric, the current-voltage curves
(and consequently also the differential conductance) are
symmetric with respect to the bias reversal.

The TMR effect reaches maximum in the zero bias
limit, V = 0, as shown in Figure 7b. In turn, angular vari-
ation of TMR reveals two maxima (and also two minima),
similarly as it was in the case of empty dot, but now the
maxima appear strictly for ϕ = π/2 and ϕ = 3π/2. On the
other hand, one minimum of TMR occurs at ϕR = ϕL = 0,
where TMR vanishes by definition. Tunnel magnetoresis-
tance vanishes also in the second parallel configuration,
when both magnetizations are antiparallel to the molecu-
lar field (ϕR = −ϕL = π). This is due to the fact that the
parameters assumed for numerical calculations correspond
to a symmetrical Anderson model, i.e., U = −ε↑ − ε↓.
When the system becomes asymmetric, e.g., when U in-
creases (decreases) while the other parameters are con-
stant, the minimum in TMR at ϕ = π is shifted down
(up) and when U � −ε↑ − ε↓, TMR has only one maxi-
mum at ϕ = π, as shown in Figure 9b. On the other hand,
if U < −ε↑−ε↓, the minimum in tunnel magnetoresistance
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Fig. 8. (Color online) Differential conductance for the situa-
tion shown in Figure 7a, calculated for two indicated temper-
atures.

at ϕ = π becomes negative, which is shown in Figure 9b
for U = 35Γ . Thus, by changing the model parameters
one may significantly enhance or reduce the TMR effect.
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tial conductance and TMR for several values of the Coulomb
interaction parameter U at the bias voltage eV = 2Γ . The
other parameters are the same as in Figure 7.

In the limit of |eV |, kBT � |∆| and for PL = PR = P ,
the TMR ratio for ϕR = −ϕL = π can be expressed as

TMR =
4P (2ε + U)(U + ∆)

(1 − P )2(ε + U + ∆/2)2 + (1 + P )2(ε − ∆/2)2
.

(24)
From the above expression follows that the sign of TMR
at ϕ = π depends on the ratio ε/U . If U = −2ε, TMR van-
ishes, whereas for U ≷ −2ε, TMR is positive (negative).
In the case of U � −2ε, the TMR effect is given by
4P/(1 − P )2.

The corresponding behavior of the differential conduc-
tance is shown in Figure 9a. Now, the maximum in the
conductance at ϕ = π for a symmetric model changes into
a minimum for U � −ε↑ − ε↓.

5 Conclusions

We have considered analytically and numerically cotun-
neling current and associated tunnel magnetoresistance
through a single-level quantum dot coupled to two ex-
ternal ferromagnetic leads. The dot level was assumed to
be spin-split due to an effective molecular field originat-
ing from a magnetic substrate on which the dot is de-
posited, and the splitting was assumed to be larger than
the characteristic parameter Γ (level width) describing the

dot-lead interaction. Although the general formulae were
derived for arbitrary in-plane orientation of the molecular
field and of the magnetic moments of the leads, detailed
numerical analysis was performed for two particular con-
figurations, which seem to be of particular interest. At this
point we would like to note, that a related problem has
been recently studied by Pedersen et al. [21], who con-
sidered cotunneling current in a similar system, but for
different magnetic geometry. In our case all magnetic mo-
ments and molecular field were in plane of the structure,
whereas in their report magnetic moments were parallel
while magnetic field was tilted out of the plane.

We have found several interesting features in the an-
gular and bias dependence of transport characteristics. In
the case of an empty dot, TMR was found to be roughly
independent of the bias voltage, but strongly dependent
on the angle between magnetic moments. When magnetic
moments of both leads rotate in opposite directions, both
electric current and TMR vary nonmonotonously with in-
creasing angle between the magnetic moments of the leads,
and maximum of TMR may occur at a noncollinear con-
figuration. For a singly occupied dot and for the case (i)
(ϕL = 0), we found strong asymmetry in electric current
and TMR with respect to the bias reversal, which disap-
pears for the case (ii) (ϕR = −ϕL). This diode-like behav-
ior of the current-voltage characteristics may be of some
interest from the application point of view. Moreover, the
asymmetry in current-voltage curves leads to associated
asymmetry in TMR which may become even negative for
one bias polarization. An important and interesting result
is also an enhancement of TMR due to the dot level split-
ting. Finally, we have also demonstrated numerically and
analytically the evolution of the cotunneling gap with the
splitting of the dot level and magnetic configuration of the
system.

The work was supported by the Polish State Com-
mittee for Scientific Research through the projects
PBZ/KBN/044/P03/2001 and 2 P03B 116 25. The au-
thors acknowledge discussions with Jürgen König and Jan
Martinek.

Appendix: Calculation of cotunneling rate

Here we present some details of the calculation of cotun-
neling rates. As an example we consider the rate given
by equation (4). Using the properties of the delta-Dirac
function it can be written as

γ+⇒+
LR,0 =

Γ+
L Γ+

R

h

∫

dεf(ε)[1 − f(ε + µL − µR)]

×
[
cos2 (ϕL/2) cos2 (ϕR/2)

(ε + µL − ε↑)2

+
sin ϕL sin ϕR

2(ε↑ − ε↓)

(
1

ε + µL − ε↑
− 1

ε + µL − ε↓

)

+
sin2 (ϕL/2) sin2 (ϕR/2)

(ε + µL − ε↓)2

]

. (A.1)
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Then, taking into account the identity

f(ε)[1 − f(ε + ξ′)] = fB(−ξ′)[f(ε + ξ′) − f(ε)] , (A.2)

equation (A.1) can be rewritten as a sum of integrals of
the type

∫
dεf(ε)/(ε − ξ)n (n = 1, 2, . . . ). In principal, it

is necessary to determine the integrals for n = 1, whereas
the ones for n > 1 can be found using the expression

∫

dε
f(ε)

(ε − ξ)n+1
=

1
n!

d(n)

d(n)ξ

∫

dε
f(ε)
ε − ξ

. (A.3)

Below we demonstrate the calculation of one of the sum-
mands, namely

J =
∫

dε
f(ε)

ε + µL − ε↑
. (A.4)

To calculate this integral we use the Lorentzian cutoff of
the form gα(ε) = W 2/[(ε−µα)2 +W 2], with W being the
cutoff parameter. Thus, equation (A.3) can be expressed
as

J =
W

2i

∫

dε
f(ε)

(ε + µL − ε↑)(ε − µL − iW )

− W

2i

∫

dε
f(ε)

(ε + µL − ε↑)(ε − µL + iW )
. (A.5)

The first (second) integral in the above formula has poles
at ε = ε↑−µL, ε = µL +(−)iW , and ε = i(2m+1)π, with
m = 0, 1, 2, . . . However, because we are interested in the
deep Coulomb blockade regime (where the second-order
processes dominate), it is justifiable to assume ε � εσ

and this way neglect the contribution of the first pole.
Then, by means of the contour integration and assuming
W to be the largest energy scale, one gets

J = ReΨ
(

1
2

+ i
ε↑ − µL

2πkBT

)

− ln
(

W

2πkBT

)

. (A.6)

As the single integral depends on the cutoff parameter, the
total rate does not. The expressions depending on W can-
cel in pairs, which can be simply seen from equation (A.2).
The other summands of equation (A.1) can be found in a
similar way with the aid of the above mentioned identities.

Another way to calculate the cotunneling rates
is to make use of the assumption ε � εσ and
approximate the resolvents of equation (A.1) by
1/(ε + µL − ε↑) ≈ 1/(µL − ε↑). As a consequence, one ar-
rives at the expressions of type

∫
dεf(ε)[1 − f(ε + ξ′)],

which can be easily calculated [25]. The latter method is
equivalent to the former one if one expands the digamma
functions and neglects the higher-order corrections in x/y,
with x = |eV |, kBT and y = εσ, εσ + U . The advantage
of using the first way of calculating the rates is that the
higher-order corrections in temperature are properly de-
scribed.
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cond-mat/0409386

21. J.N. Pedersen, J.Q. Thomassen, K. Flensberg,
cond-mat/0412145

22. J. Fransson, cond-mat/0502288
23. J. Fransson, O. Eriksson, I. Sandalov, Phys. Rev. Lett. 88,

226601 (2002)
24. This follows directly from the general kinetic equation in

the Liouville space for the density matrix elements derived
within the real-time diagrammatic technique [19]

25. D.V. Averin, Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446
(1990); D.V. Averin, Yu. V. Nazarov, in Single Charge
Tunneling, edited by H. Grabert, M. Devoret (Plenum,
New York 1992)

26. K. Kang, B.I. Min, Phys. Rev. B 55, 15412 (1997)
27. J. König, Y. Gefen, Phys. Rev. Lett. 86, 3855 (2001)
28. A. Kogan, S. Amasha, D. Goldhaber-Gordon, G. Granger,

M.A. Kastner, H. Shtrikman, Phys. Rev. Lett. 93, 166602
(2004)


